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Some incidence theorems of projective geometry admit interpretation as inte-
grable discrete equations. We consider several examples:

• Yang-Baxter mapping on the linear pencil of conics [1]

• planar quadrilateral lattices [2]

• Möbius generalization of Pascal theorem and discrete Schwarz-BKP
equation [2]

[1] V.E. Adler, A.I. Bobenko, Yu.B. Suris, Geometry of Yang-Baxter maps: pencils
of conics and quadrirational mappings, math.QA/0307009

[2] V.E. Adler, Some. . . , nlin.SI/0409065



Yang-Baxter mapping on the linear pencil of conics

Let X1, X2 be points on the conics C1, C2 respectively.
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Yang-Baxter mapping on the linear pencil of conics

Let X1, X2 be points on the conics C1, C2 respectively.

The mapping R12 : C1 × C2 → C1 × C2 is defined as follows:

X12 = X1X2 ∩ C1, X21 = X1X2 ∩ C2

C1

C2

1
12

2

21



Consider initial data on three conics from the linear pencil.
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Consider initial data on three conics from the linear pencil.

Apply the mappings Rij : (Xi, Xj) 7→ (Xij, Xji).
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Consider initial data on three conics from the linear pencil.

Apply the mappings Rij : (Xi, Xj) 7→ (Xij, Xji).

Apply them again. Let Rij : (Xik, Xjk) 7→ (Xikj, Xjki).

Theorem 1. Xijk = Xikj
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12 points and 6 straight lines can be identified with the edges and faces of a cube.
Parallel edges correspond to the same conic. Parallel faces correspond to the same
mapping.

3D-consistency of the mappings Rij means that the two ways of obtaining the
point Xijk give the same result.
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Under a rational parametrization of conics, R12 is a rational mapping on CP1×CP1.
There are 5 types of linear pencils of conics Ci = C + αiK, leading to the list

xij = αixj
(1− α2)x1 + α2 − α1 + (α1 − 1)x2

α2(1− α1)x1 + (α1 − α2)x2x1 + α1(α2 − 1)x2

xij =
xj

αi

· α1x1 − α2x2 + α2 − α1

x1 − x2

xij =
xj

αi

· α1x1 − α2x2

x1 − x2

xij = xj

(
1 +

α2 − α1

x1 − x2

)

xij = xj +
α1 − α2

x1 − x2

The first mapping corresponds to the above pictures with 4-point locus.



Planar quadrilateral lattices

Theorem 2. Consider a combinatorial cube on the plane. If, for some pair of the
opposite faces, the intersection points of (the prolongations of) the corresponding
edges are collinear, then the same is true for any other pair.
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Planar quadrilateral lattices

Theorem 2. Consider a combinatorial cube on the plane. If, for some pair of the
opposite faces, the intersection points of (the prolongations of) the corresponding
edges are collinear, then the same is true for any other pair.



Proof. Collinearity of one quadruple of the intersection points allows to construct a
combinatorial cube in space, with planar faces, for which our figure is a projection.
For such a figure, edges meet on the intersections of 3 pairs of the planes.

Remark. 8 vertices of the cube + 12 intersection points and 12 sides + 3 lines of
intersections form a regular configuration with the symbol (203154). This configu-
ration is mentioned in [1], in connection with the following statement (equivalent
to Theorem 2):

Let 3 triangles be perspective with the common center. Then 3 axes
of perspective of 3 pairs of triangles meet in one point.

[1] F. Levi, Geometrische Konfigurationen, Leipzig: 1929, p. 143, 202.



Collinearity of 4 intersection points is a condition, which allows to construct any
vertex of the combinatorial cube by the other ones. Let X,X1, . . . , X23 be given,
then X123 is defined by

A = XX1 ∩X3X13, B = XX2 ∩X3X23

A′ = X2X12 ∩ AB, B′ = X1X12 ∩ AB

X123 = A′X23 ∩B′X13.

(1)

This defines the mapping R : (CP2)7 → CP2. Accordingly to the proof of the
Theorem 2 and results of [1], this mapping is 4D-consistent.

[1] A. Doliwa, P.M. Santini, Multidimensional quadrilateral lattices are integrable.
Phys. Lett. A 233:265–372, 1997.



This means that if we consider a combinatorial hypercube such that each of
its 3D faces carries the mapping R, then the point X1234 (red) is obtained from
the initial data (green) in 4 different ways without contradiction.



Möbius generalization of Pascal theorem and dSBKP equation

Theorem 3 (Möbius). Let X1, Y1, . . . , XN , YN be points on a conic. Consider the
intersection points Aj = XjXj+1 ∩ YjYj+1, j = 1, . . . N − 1 and

AN =

{
XNY1 ∩ YNX1 if N = 2n + 1,
XNX1 ∩ YNY1 if N = 2n.

If all of these points except possibly one are collinear then the same is true for the
remaining point.
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At N = we have two quadrilaterals X1X2X3X4 and Y1Y2Y3Y4 such that the
corresponding sides meet on a straight line. Identifying these quadrilaterals with the
opposite faces of a combinatorial cube, we obtain immediately, that the mapping
(1) admits the reduction to a conic section.

The rational parameters x of the points X on the conic satisfy the discrete
Schwarz-BKP, or double cross-ratio equation

(x− x12)(x13 − x23)

(x12 − x13)(x23 − x)
=

(x123 − x3)(x2 − x1)

(x3 − x2)(x1 − x123)
.

[1] F.A. Möbius, Verallgemeinerung des Pascal’schen Theorems das in einen Kegel-
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